Support Vector Machine-based Aproach for Multi-labelers Problems

نویسندگان

  • S. Murillo Rendón
  • Diego Hernán Peluffo-Ordóñez
  • Germán Castellanos-Domínguez
چکیده

We propose a first approach to quantify the panelist’s labeling generalizing a soft-margin support vector machine classifier to multi-labeler analysis. Our approach consists of formulating a quadratic optimization problem instead of using a heuristic search algorithm. We determine penalty factors for each panelist by incorporating a linear combination in the primal formulation. Solution is obtained on a dual formulation using quadratic programming. For experiments, the well-known Iris with multiple simulated artificial labels and a multi-label speech database are employed. Obtained penalty factors are compared with both standard supervised and non-supervised measurements. Promising results show that proposed method is able to asses the concordance among panelists considering the structure of data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Multi-Labeller classification Method based on Mixture of Classifiers and Genetic Algorithm Optimization

This work presents a new method proposal applied to Multi-Labelers scenarios. This is a situation where labelling individuals in a set of data based on certain characteristics in the process of determining labels to individuals in a set of data based on certain characteristics. Our approach consists in processing a Support Vector Machine classifier to each labelers substantiated on his answers....

متن کامل

Multi-Labeller classification Method based on Mixture of Classifiers and Genetic Algorithm Optimization

This work presents a new method proposal applied to Multi-Labelers scenarios. This is a situation where labelling individuals in a set of data based on certain characteristics in the process of determining labels to individuals in a set of data based on certain characteristics. Our approach consists in processing a Support Vector Machine classifier to each labelers substantiated on his answers....

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

ارائه یک مدل بهینه‌سازی ریاضی چند‌هدفه برای طبقه‌بندی

In this paper we investigate the issues of data classification (as one of the branches of data mining science) in form of multi-objective mathematical programming model. The model that we present and investigate is a MODM problem. First time, based on support vector machine (SVM) idea (To maximize the margin of two groups), a multi-criteria mathematical programming model was proposed for data m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013